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a b s t r a c t

This paper reviews, classifies and compares recent models for social networks that have mainly been
published within the physics-oriented complex networks literature. The models fall into two categories:
those in which the addition of new links is dependent on the (typically local) network structure (network
evolution models, NEMs), and those in which links are generated based only on nodal attributes (nodal
attribute models, NAMs). An exponential random graph model (ERGM) with structural dependencies is
included for comparison. We fit models from each of these categories to two empirical acquaintance
networks with respect to basic network properties. We compare higher order structures in the resulting
networks with those in the data, with the aim of determining which models produce the most realistic
network structure with respect to degree distributions, assortativity, clustering spectra, geodesic path
distributions, and community structure (subgroups with dense internal connections). We find that the
nodal attribute models successfully produce assortative networks and very clear community structure.
However, they generate unrealistic clustering spectra and peaked degree distributions that do not match
empirical data on large social networks. On the other hand, many of the network evolution models pro-
duce degree distributions and clustering spectra that agree more closely with data. They also generate
assortative networks and community structure, although often not to the same extent as in the data.
The ERGM model, which turned out to be near-degenerate in the parameter region best fitting our data,
produces the weakest community structure.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Modeling social networks serves at least two purposes. First,
it helps us understand how social networks form and evolve.
Secondly, in studying network-dependent social processes by sim-
ulation, such as diffusion or retrieval of information, successful
network models can be used to specify the structure of interaction.
A large variety of models have been presented in the physics-
oriented complex networks literature in recent years, to explore
how local mechanisms of network formation produce global net-
work structure. In this paper we review, classify and compare such
models.

The models are classified into two main categories (Fig. 1):
those in which the addition of new links is dependent on the local
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network structure (network evolution models, NEMs), and those
in which the probability of each link existing depends only on
nodal attributes (nodal attribute models, NAMs). NEMs can be fur-
ther subdivided into growing models, in which nodes and links are
added until the network contains the desired number N of nodes,
and dynamical models, in which the steps for adding and remov-
ing ties on a fixed set of nodes are repeated until the structure
of the network no longer statistically changes. For completeness,
we include in our comparative study two models from the tradi-
tion of exponential random graph models (ERGMs). One of them
is based solely on nodal attributes, and the other incorporates
structural dependencies. All of these models produce undirected
networks without multiple links or self-links, and all networks are
treated as unweighted, i.e. tie strengths are not taken into account.
We note that some of the models were designed with a particu-
lar property in mind, such as a high average clustering coefficient,
but we will assess their ability to reproduce several of the typical
features of social networks. In addition to comparing the distribu-
tions of degree and geodesic path lengths and clustering spectra, we
assess the presence or absence of communities, which in the com-

0378-8733/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.socnet.2009.06.004

file://localhost/Users/onnela/Downloads/dx.doi.org/10.1016/j.socnet.2009.06.004
http://www.sciencedirect.com/science/journal/03788733
http://www.elsevier.com/locate/socnet
mailto:riitta.toivonen@gmail.com


R. Toivonen et al. / Social Networks 31 (2009) 240–254 241

plex networks literature are typically defined as groups of nodes
that are more densely connected to nodes in the same commu-
nity than to nodes in other communities (Fortunato and Castellano,
2008).

This paper is structured as follows. In Sections 1.1–1.3, we define
the categories of network evolution models and nodal attribute
models, and briefly review exponential random graph models. Sec-
tion 1.4 discusses differences between the philosophies behind
NEMs and ERGMs. We fit models from each of these categories to
two empirical acquaintance networks with respect to basic net-
work statistics. The fitting procedure is discussed in Section 3 and
Appendix A.2. In Section 4, we compare higher order structures in
the resulting networks with those in the data. Section 5 summarizes
our results.

1.1. Network evolution models (NEMs)

Let us first present a class of network models that focuses
on network evolution mechanisms. These models test hypotheses
that specific network evolution mechanisms lead to specific net-
work structure. We call these network evolution models (NEMs), and
define them via three properties as follows:

(1) A single network realization G is produced by an iterative pro-
cess that always starts from an initial network configuration
G(t0) specified in the NEM. Dynamical models often begin with
an empty network, and growing models start with a small seed
network.1

(2) The specifications of the NEM include an explicitly defined set
of stochastic rules by which the network structure evolves in
time. These rules concern selecting a subset of nodes and links
at each time step, and adding and deleting nodes and links
within this subset. The rules typically correspond to abstracted
mechanisms of social tie formation such as triadic closure
(Granovetter, 1973), i.e. tie formation based on the tendency
of two friends of an individual to become acquainted. The rules
always depend on network structure and they can sometimes
also incorporate nodal attributes. The rules determine the possi-
ble transitions from one network G(tk−1) to the next G(tk) during
the iterative process that will produce one network realization
G = G(tend).

(3) The NEM includes a stopping criterion:
(a) For a growing NEM, the algorithm finishes when the network

has reached a predetermined size. The typical assumption
is that relevant statistical properties of the network remain
invariant once the network is large enough.

(b) For a dynamical NEM, the algorithm finishes when selected
network statistics no longer vary.2

A growing model can be motivated as a model for social net-
works in several contexts. For example, on social networking sites
people rarely remove links, and new users keep joining the network.
Similarly, in a co-authorship network Newman (2001) derived from
publication records, existing links remain while new links form.
We point out that the growing models do not intend to simulate
the evolution of a social network ab initio. However, the mecha-

1 The seed network does not always need to be exactly specified, as long as it meets
the given general criterion (such as being small compared to the network that will
be generated), as it typically has a negligible effect on the resulting network.

2 While the stopping criterion for a growing NEM is exact, requirement 3(b) is a
heuristic criterion that assumes that the algorithm will reach a stage at which the
selected statistical properties of the networks G′(t) stabilize. Although we cannot
know with absolute certainty whether stationary distributions have been reached,
we can be relatively confident of it if monitored properties remain constant and their
distributions appear stable for a large number of time steps.

nisms are selected to imitate the way people might join an already
established social network.

The NEMs in our comparative study include only network struc-
ture based evolution rules (that may depend on topology and tie
strengths), although nodal attribute based rules are also possible.
Models in which link generation is based solely on (fixed) nodal
attributes belong to the category of nodal attribute models (NAMs)
discussed below.

1.2. Nodal attribute models (NAMs)

We adopt the term nodal attribute models (NAMs) for network
models in which the probability of edge eij between nodes i and
j being present is explicitly stated as a function of the attributes
of the nodes i and j only, and the evolutionary aspect is absent.
NAMs are often based on the concept of homophily (McPherson et
al., 2001), the tendency for like to interact with like, which is known
to structure network ties of various types, including friendship,
work, marriage, information transfer, and other forms of relation-
ship. Such models have also been described by the term spatial
models (Boguñá et al., 2004; Wong et al., 2006), referring to that
the fact that the attributes of each node determine its ‘location’ in
a social or geographical space.

1.3. Exponential random graph models (ERGMs)

Exponential random graph models (ERGMs) (Frank and Strauss,
1986; Frank, 1991; Wasserman and Pattison, 1996; Robins et al.,
2007a; Snijders et al., 2006; Robins et al., 2007b), also called p∗

models, are used to test to what extent nodal attributes (exogenous
factors) and local structural dependencies (endogenous factors)
explain the observed global structure. For example, Goodreau
(2007) used ERGMs to infer that much of the global structure (mea-
sured in terms of the distributions of degree, edgewise shared
partners and geodesic paths) observed in a friendship network
could be captured by nodal attributes and patterns of shared part-
ners and k-triangles, which are relatively local structures.

Consider a random graph X consisting of N nodes, in which a
possible tie between two nodes i and j is represented by a random
variable Xij , and denote the set of all such graphs by X. Using this
notation, ERGMs are defined by the probability distribution of such
graphs X

P!,X(X = x) = exp{!t u(x)}
c(!,X)

, (1)

where ! is the vector of model parameters, u(x) is a vector of
network statistics based on the network realization x, and the
denominator c(!,X) is a normalization function that ensures that
the distribution sums up to one. The selected statistics u(x) specify
a particular ERGM model. Typically, the parameters ! of an ERGM
model are determined using a maximum likelihood (ML) estimate,
obtained by Markov Chain Monte Carlo (MCMC) sampling (Geyer
and Thompson, 1992; Snijders, 2002). MCMC sampling heuristics
are also used to draw network realizations from the distribution
P!,X. Several software packages are designed for fitting and sim-
ulating ERGMs (including pnet, SIENA, and statnet, discussed by
Robins et al. (2007b)).

1.4. Differences between NEMs and ERGMs

An important difference between network evolution models and
exponential random graph models is that a NEM is determined by
the rules of network evolution, whereas ERGMs do not explicitly
address network evolution processes. The particular update steps
employed in the iterative MCMC procedure for drawing samples are
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not explicitly specified in ERGMs, which are defined by the proba-
bility distribution P!,X, although MCMC methods can also be used
to model the evolution of social networks (Snijders, 1996, 2001).
A class of probability models that includes network evolution is
the stochastic actor-oriented models for network change proposed
by Snijders (1996), which are continuous-time Markov chain mod-
els that are implemented as simulation models. Another difference
is that unlike ERGMs, NEMs explicitly specify an initial configu-
ration from which the iteration is started, as well as a stopping
criterion. However, NEMs are typically not sensitive to the initial
configuration.

One of the known problems with ERGMs is that the distributions
of their sufficient statistics may be multimodal (Snijders, 2002).
This has been of particular concern with respect to ERGMs that
include statistics related to transitivity, which is a highly relevant
feature in modeling social networks. The first stochastic model to
express transitivity, the Markov graph (Frank and Strauss, 1986),
employed a simple triangle count term that is known to cause
problems of model degeneracy (Jonasson, 1999), and to lead to
instability in simulation of large networks with Markov Chain
Monte Carlo (MCMC) methods (Snijders, 2002; Handcock, 2003;
Goodreau, 2007). A recently proposed term related to triangles, the
geometrically weighted edgewise shared partners statistic (GWESP)
(Snijders et al., 2006; Hunter et al., 2008), has helped to avoid this
problem at least for smaller scale networks (Hunter et al., 2008;
Robins et al., 2007b). We include in our comparison an ERGM that
includes the GWESP term. It turns out that we encounter instability
even with this model. In fitting this model to our data, in the optimal
parameter region a very small modification of the model parame-
ters produces a large difference in the resulting network structure.
This is discussed in Section 3 and Appendix A.2.

In contrast, transitivity is easy to incorporate in NEMs. Problems
of multimodality have not been observed with NEMs. Although we
do not always have theoretical certainty that the network evolu-
tion rules could not lead to multimodal distributions of network
statistics, in practice the models with given parameters seem to
consistently produce network realizations with similar statistics.

The NEMs and ERGMs lend themselves to testing different kinds
of hypotheses about networks. ERGMs can be employed to test
to what extent nodal attributes and local structural correlations
explain the global structure. Although both NEMs and ERGMs can
easily incorporate nodal attributes, they have rarely been included
in NEMs. The NEMs proposed so far have been of a fairly generic
nature, whereas the ERGM approach often aims to make inferences
based on specific empirical data, often including nodal attributes.
On the other hand, NEMs can be employed for testing hypotheses
about network evolution, which ERGMs do not explicitly address.
For example, a NEM can be used to test whether a combination
of tie-strength-dependent triadic closure and global connections

can produce a clearly clustered structure (Kumpula et al., 2007).
Although ERGMs can also be interpreted as addressing endogenous
(network structure based) selection processes via structural depen-
dencies, the mechanisms by which new ties are created based on
the existing network structure are made explicit only in NEMs.

For the dynamical NEMs treated in this paper, it is easy to
generate (and estimate parameters for) networks of 10,000 nodes
or more. The growing models can easily produce networks with
millions of nodes. Based on our hands-on experience using state-
of-the-art ERGM software (statnet; Handcock et al., 2003, 2007),
it seems that generating a realization from a NEM might typically
have much lower computational cost than drawing a sample from
an ERGM with structural dependencies. In generating network real-
izations from an ERGM, we used as a guideline that the number of
MCMC steps, corresponding to the number of proposals for changes
in the link configuration, should be large enough such that the
presence or absence of a link between each dyad is likely to be
changed several times. With this approach, the number of MCMC
steps should be proportional to the number of dyads, implying that
the complexity is at least on the order of O(N2). This is already
a much larger burden than the O(N) complexity of NEMs based
on local operations in the neighborhood of a selected node. Our
assumption of the computational demands of ERGMs is supported
by the fact that networks that have thus far been studied with
ERGMs have consisted typically of at most a couple of thousands
of nodes (Goodreau, 2007).

2. Description of the models

Many complex networks models study the question of whether
structures observed in social networks could be explained by the
network-dependent interactions of nodes, without reference to
intrinsic properties of nodes. Such models are based on assump-
tions about the local mechanisms of tie formation, such as people
meeting friends of friends, and thus forming connections with their
network neighbors (triadic closure Granovetter, 1973). An addi-
tional mechanism to produce ‘global’ connections beyond the local
neighborhood is typically included to account for short average
geodesic path lengths (Milgram, 1967). Such connections may arise
from encounters at common hobbies, places of work, etc. In models
that do not consider nodal attributes, contacts between any dyads in
the network are considered equally likely. These two mechanisms,
triadic closure and global connections (TCG), form the basis of all
the NEMs we study in this work.

Tables 1–3 contain more detailed descriptions of the models
and their parameters, with fixed parameters given in parentheses.
Values of the fixed parameters were selected according to the orig-
inal authors’ choices wherever possible. We label the models using
author initials.

Fig. 1. Categories of social network models. Within the category of NEMs, we focus on models based on triadic closure and global connections (TCG). Model labels correspond
to models discussed in Section 2.
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Table 1
Category: Dynamical network evolution models (dynamical NEMs). Three models based on triadic closure and global connections.

Parameters Mechanisms (number of nodes N fixed; repeat steps for (I) adding ties and (II) deleting ties until stationary
distributions are reached)

DEB (Davidsen et al., 2002)
2 free, N, p (I) Select a node i randomly, and

(a) if i has fewer than two ties, introduce it to a randomnode,
(b) otherwise pick two neighbors of i and introduce them if they are not already acquainted.

(II) Select a random node and with prob. p remove all of its ties.

MVS (Marsili et al., 2004)
3 free, N, ", # ($ = 0.001) (I) Select a node i randomly, and

(a) connect i to another random node with probability #.
(b) Select a friend’s friend of i (by uniformly random search) with probability " and introduce i to it if not already

acquainted.
(II) Select a random tie and delete it with probability $.

KOSKK (Kumpula et al., 2007)
3 free, N, p% , pr (w0 = 1, pd = 0.001, ı = 0.5) (I) Select a node i randomly, and

(a) select a friend’s friend k (by weighted search) and introduce it to i with prob. p% (with initial tie strength w0) if not
already acquainted. Increase tie strengths by ı along the search path, as well as on the link lik if it was already present.

(b) Additionally, with prob. pr (or with prob. 1 if i has no connections), connect i to a random node j (with tie
strength w0).
(II) Select a random node and with prob. pd remove all of its ties.

Nodes represent individuals and links represent ties between them. Parameters whose values were fixed according to the original authors’ choices are shown in parentheses.

Table 2
Category: Growing network evolution models (growing NEMs). Two models based on triadic closure and global connections.

Parameters Mechanism (repeat steps for (I) adding nodes and ties (II) adding ties only until network contains N nodes)

TOSHK (Toivonen et al., 2006)
3 free, N, p, k (simplified) (I) Add a new node i to the network, connecting it to one random initial contact with probability p, or two with

probability 1 − p.
(II) For each random initial contact j, draw a number msec of secondary connections from the distribution U[0, k] and
connect i to msec neighbors of j if available.

Váz (Vázquez, 2003)
2 free N, u (I) With probability 1 − u, add a new node to the network, connecting it to a random node i. Potential edges are

created between the newcomer n and the neighbors j of i (a potential edge means that n and j have a common
neighbor, i, but no direct link between them).
(II) With probability u, convert one of such potential edges generated on any previous time step to an edge. Potential
edges generated by converting an edge are ignored.

Table 3
Category: Nodal attribute models (NAMs).

Parameters Mechanism

BPDA(Boguñá et al., 2004)
3 free, N, ˛, b Distribute N nodes with uniform probability in a (one-dimensional) social space (a segment of length hmax). Link nodes

with prob. p = 1/(1 + (d/b)˛), where d is their distance in the social space. (hmax can be absorbed within b). If treated
many-dimensionally, similarity along one of the social dimensions is sufficient for the nodes to be seen as similar.

WPR (Wong et al., 2006)
4 free, N, H, p, pb Distribute N nodes according to a homogeneous Poisson point process in a (two-dimensional) social space of unit area.

Create a link between each node pair separated by distance d with probability p + pb if d < H, and with probability
p − p% if d > H (where p%(p, pb, H) is such that the total fraction p of all possible links is generated).

Dynamical network evolution models. We will first look at three
dynamical models that combine triadic closure and global connec-
tions (TCG) for creating new links. These were proposed by Davidsen
et al. (2002) (DEB), Marsili et al. (2004) (MVS), and Kumpula et al.
(2007) (KOSKK). The different ways of implementing triadic clo-
sure and deletion of links in each of these models are highlighted
in Fig. 2. In triadic closure mechanism T1, a node is introduced to
another node by their common neighbor. In mechanism T2, new
contacts are made through search via friends: A node links to a
neighbor of one of its neighbors. Dynamical models in which new
links are continuously added must also include a mechanism for
removing links, to avoid ending up with a fully connected network.
In node deletion (ND), all links of a node are deleted. This emulates a
node ‘leaving’ and a newcomer joining the network. In link deletion
(LD), each link has a given probability of being deleted at each time
step.

Fig. 2. The dynamical network evolution models DEB, KOSKK, and MVS, classified
according to the mechanisms for triadic closure and link deletion employed in them.
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The DEB model is the simplest of the three, with only two param-
eters, network size N and the probability p of deleting a node. The
MVS and KOSKK models both use triadic closure mechanism T2,
a two-step search in the neighborhood of a node, but the KOSKK
model takes interaction strength into account. In KOSKK, new links
are created preferably through strong ties, and every interaction
further strengthens them. This mechanism is able to produce clear
community structure (Kumpula et al., 2007), confirmed by our anal-
ysis in Section 4. The three models also differ in whether a new node
can remain isolated for several time steps (as in the MVS model) or
will immediately link to another node (as in KOSKK), and in whether
there is a limit on the number of random connections each node can
make (as in DEB). Because of such differences, it is difficult to isolate
the effects of the choices of T1 versus T2 and ND versus LD. There-
fore, in Section 4.5 we will combine the four mechanisms using the
DEB model as a basis.

Marsili et al. (2004) did not mention which value they used in the
MVS model for the probability $ of deleting a link at each time step.
We fixed $ = 0.001 in our simulations, giving each tie an average
‘lifetime’ of 1000 time steps. When generating network realizations,
the dynamical models MVS, DEB, and KOSKK are iterated until mon-
itored distributions appear to become stationary. Sometimes the
authors do not state which particular criterion they used. For the
MVS and DEB models, we determined how many iterations (the
steps described in Table 1) it takes until average degree stabilizes
and its distribution appears stationary. When generating networks,
we used a number of iterations above this limit. For the KOSKK
model, we used a number of iterations determined by the authors
to be sufficient for the distributions of degree and several other
network properties to appear stationary (2.5 × 104 × N, where N is
network size, resulting in 2 × 108 and 2.8 × 107 for fitting to our
data sets of sizes 8003 and 1133 presented in Section 3.2).

Growing network evolution models. We include two growing
models, proposed by Vázquez (2003) (Váz) and Toivonen et al.
(2006) (TOSHK). They are described in detail in Table 2. These are
to our knowledge the only growing models specifically proposed
for social acquaintance networks. The motivation behind the Váz
model is to produce a high level of clustering and a power law
degree distribution. The TOSHK model also aims at a broad degree
distribution and a high clustering coefficient, but also sets out to
reproduce other features observed in social networks, such as com-
munity structure.

In TOSHK, each new node links to one or more ‘initial contacts’,
which in turn introduce the newcomer to some of their neighbors.
In Váz, a newcomer node first links to a random node i, creating
potential edges (Vázquez’s term) between itself and the neighbors
of i. These ties may be realized later, generating triangles in the
network. In both models, triangles are only generated between the
newcomer and the neighbors of its initial contact, and further pro-
cesses of introduction are ignored. As with all the models, we keep
to the authors’ choices presented in the original paper. Accordingly,
in the TOSHK model, we allow a newcomer to link to at most two
initial contacts (see Table 2), and pick the number of secondary con-
tacts from the uniform distribution U[0, k], although this clearly
limits the adaptability of the model.

Nodal attribute models. We study two nodal attribute models that
differ in the dependence of link probability on distance and in the
employed distance measure. These models, proposed by Boguñá et
al. (2004) (BPDA) and Wong et al. (2006) (WPR), are described in
Table 3. The authors mention that a social space of any dimension
could be used, but study the cases of 1D and 2D, respectively. We
keep to their choices.

ERGM with structural dependencies. As our data does not contain
nodal attributes, we can only include structural terms in the expo-
nential random graph model labeled ERGM1 (Table 4). The term
edge count is an obvious choice to include, in order to match average

Table 4
Category: Exponential random graph models (ERGM) with structural dependencies.

Parameters Definition

ERGM1(Snijders et al., 2006)
4 free, N, !L , !GWESP , !GWD

(& = 0.25)
The model is defined with three terms: edge
count L, geometrically weighted edge-wise
shared partners (GWESP) v(x; &) (Eq. 2), and
geometrically weighted degree (GWD) u(x; &)
(Eq. (3)), as the probability distribution

P!,X(X = x) = exp{!LL+!GWESP v(x)+!GWDu(x)}
c(!,X)

degree. We must also include a term related to triangles, consider-
ing the prevalence of transitivity social networks. We employ the
geometrically weighted edgewise shared partner statistic (GWESP),
proposed by Snijders et al. (2006) and formulated by Hunter et al.
(2008) as

v(x; &) = e&
n−2∑

i=1

{1 − (1 − e&)i}EPi(x), (2)

where the edgewise shared partners statistic EPi(x) indicates the
number of unordered pairs {j, k} such that xjk = 1 and j and k have
exactly i common neighbors (Hunter, 2007). The simple triangle
count term employed in Markov random graphs is known to cause
problems of multimodality, and we are not aware of other triangle-
related terms that would have been employed in ERGMs. Because
we would also like to match the degree distribution to the data, we
include the geometrically weighted degree term (GWD) (Snijders
et al., 2006; Hunter et al., 2008).3

u(x; &) = e&
n−2∑

i=1

{1 − (1 − e&)i}Di(x), (3)

where Di indicates the number of nodes with degree i. We fix
the parameter & = 0.25 as in Goodreau (2007). We generate net-
work realizations using the statnet software (Handcock et al.,
2007). MCMC iterations are started from an Erdős-Renyi (Bernoulli)
network with average degree matching the target. We draw 5 real-
izations from each MCMC chain at intervals of 107, using a burn-in of
5 × 107 time steps. Model parameters are optimized consistently for
all models with the procedure described in Section 3 and Appendix
A.2.

3. Fitting the models

In order to compare networks generated by different models, it
is necessary to unify some of their properties. To this end, we fit
the models to two real-world data sets with respect to as many of
the most relevant network features as the model parameters allow.
Our fitting method consists of simulating network realizations with
different model parameters, and finding the parameter values that
produce the best match to selected statistics.

3.1. Targeted features for fitting

The most important properties that we wish to align between
the models and the data are the number of nodes and links. Because

3 Goodreau (2007) observed that the model edges+covariates+GWESP explains
much of the observed data (an adolescent friendship network with 1681 actors)
and that no improvement is achieved by including the terms geometrically
weighted degree (GWD) or geometrically weighted dyadwise shared partners statis-
tic (GWDSP). Based on this, it seems that the terms GWD and GWDSP might not bring
additional value to a model that already includes the GWESP term. However, the con-
clusions drawn by Goodreau (2007) might not be transferable to our case because
our data is different; for example, we do not have nodal attribute data.
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both of our data sets are connected components of a larger network,
we focus on the properties of the largest connected component of
the generated networks. Our first two fitting targets are largest con-
nected component size NLC and the average number of links per
node, or average degree k̄, within the largest component. They are
already sufficient for fitting the DEB and Váz models, which have
only two parameters. A natural choice for the next target is some
measure related to triangles, because they are highly prevalent
in social networks. We will use the average clustering coefficient
c̄ (please see Appendix A.1 for the definition), which is a well-
established characterization of local triangle density in the complex
networks literature. All of the network evolution models in this
study had as one of their aims obtaining a high clustering coeffi-
cient. These three features are sufficient for fitting the rest of the
models except WPR, if we fix some of the parameters according to
the original authors’ choices (please see Table 1).

If the matching of NLC , k̄ and c̄ is not enough to fix all param-
eters of the model, we no longer have a straightforward choice.
We considered using the assortativity coefficient and geodesic
path lengths (see Appendix A.1). In the WPR model, assortativity
varies closely together with the average clustering coefficient, so
it could not be used as a fourth target feature. Instead, we used
the average geodesic path length. We also attempted using the
assortativity coefficient for fitting the KOSKK model, allowing the
weight increment parameter ı to vary, but ran into a different prob-
lem: attempting high assortativity forced the weight increment
parameter to zero, thereby eliminating an important feature of the
weighted model and weakening the community structure. Hence,
we fixed ı = 0.5 in accordance with the authors’ choice.

All of these measures – degree, high clustering, assortativity,
and geodesic path lengths – assess important properties of social
networks, which are likely to affect dynamics such as opinion for-
mation or spreading of information (Onnela et al., 2007b; Moreno
et al., 2004; Castellano et al., 2009). The average properties can typ-
ically be tuned by varying parameter values, but the general shapes
of the distributions are likely to be invariable.

3.2. The friendship network at www.last.fm and the email
network

We selected two social network data sets with slightly different
average properties, in order to get a better picture of the adaptabil-
ity of the models. They differ in average degree, average clustering
coefficient, and the assortativity coefficient, although both display
assortativity and high clustering.

We collected a mutual friendship network of users of the web
service last.fm. At the web site http://www.last.fm, people can share
their musical tastes and designate other users as their friends. We
used for this study only the friendship information, disregarding
the musical preferences. Because there are several hundred thou-

sand users on the site worldwide, we selected users in one country,
Finland, to obtain a smaller network with 8003 individuals. The
country labels were self-reported. This data set (henceforth called
lastfm) represents the largest connected component of Finnish
users at this site. Individuals in the resulting network have on the
average k̄ = 4.2 friends, and a high clustering coefficient c̄ = 0.31.
The network is highly assortative with r = 0.22, indicating that
friends of those users who have many connections at the site are
themselves well connected (please see Appendix A.1 for defini-
tions). After designating someone as a friend, there is no cost to
maintaining the tie, i.e. the link never expires. This means that the
data may overestimate the number of active friendships within the
last-fm web site. However, the degree distribution is not broader
than that observed in a network constructed from mobile phone
calls (Onnela et al., 2007a), in which each contact has a real cost in
time and money. Requiring ties to be reciprocated ensures that the
users have at least both acknowledged one another.

We also use a smaller acquaintance network collected by
Guimerá et al. (2003), based on emails between members of the
University Rovira i Virgili (Tarragona). In the derived network, two
individuals are connected if each sent at least one email to the
other during the study period, and bulk emails sent to more than
50 recipients are eliminated. Again, we use the largest connected
component of the network. It consists of 1133 individuals, and it
is a compact network with average geodesic path length l̄ = 3.6,
average degree k̄ = 9.6, fairly high average clustering coefficient
c̄ = 0.22, and fairly small assortativity r = 0.08.

Both of our empirical networks are unweighted, meaning that
tie strengths are not specified. All of the models studied here apart
from KOSKK are unweighted as well. Averaged basic statistics of
both data sets are displayed in Table 6. The degree distributions,
clustering spectra and degree–degree correlations of the lastfm and
email networks are shown in Fig. 3, and more plots of their statistics
are shown in Section 4 in connection with the fitted models.

Table 5 indicates which features were targeted when optimizing
the parameters of each model, and displays the optimized param-
eters. Table 6 displays properties of the networks generated with
these parameters. Due to the stochastic nature of the models, two
network realizations generated with the same parameters are not
likely to have exactly the same average properties. The plots and
tables concerning the model networks in this paper always contain
values averaged over 100 network realizations.

Fitting to a limited number of data sets does not allow full assess-
ment of the adaptability of the models. However, the features that
we examine are similar in our two data sets as in other large scale
empirical social networks, such as those based on communication
via mobile phone (Onnela et al., 2007a; Seshadri et al., 2008) and
Microsoft Messenger (Leskovec and Horvitz, 2008). For example,
these networks have skewed degree distributions that imply the
presence of high degree nodes, high average clustering coefficients

Fig. 3. Properties of the lastfm data set (•) and the email data (◦). (a) Degree distributions, with average degrees k̄ = 4.2 and 9.6, respectively. Guimerá et al. (2003) fitted to
the email data an exponential distribution p(k) = e−k/k∗ with k∗ = 9.2, which shows as a straight line in a semilogarithmic plot. The lognormal distribution fitted the lastfm
data best of the different distributions we tried (exponential, Weibull, gamma, and lognormal), although not perfectly. (b) Clustering c(k) decreases with degree k (average
clustering c̄= 0.31 and 0.22, respectively). (c) Degree–degree correlations between nodes and their neighbors (knn signifies average nearest neighbor degree) show that both
networks are assortative (with r = 0.22 and r = 0.08, respectively).

http://www.last.fm
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Table 5
Targeted network features, and the fitted model parameters leading to the values
closest to the lastfm and email data sets.

DEB matched to NLC , k̄
lastfm: N = 8330, p = 0.203
email: N = 1138, p = 0.064

MVS matched to NLC , k̄, c̄
lastfm: N = 9300, " = 0.0022, # = 0.000368
email: N = 2270, " = 0.0062, # = 0.000071

KOSKK matched to NLC , k̄, c̄
lastfm: N = 8205, p% = 0.0029, pr = 0.0008
email: N = 1135, p% = 0.0107, pr = 0.0039

TOSHK matched to N, k̄, c̄
lastfm: N = 8003, p = 0.60, k = 1
email: N = 1133, p = 0.06, k = 3

Váz matched to N, k̄
lastfm: N = 8003, u = 0.524
email: N = 1133, u = 0.793

ERGM1 matched to NLC , k̄, c̄
lastfm: –
email: N = 1160, !L = −6.962, !GWESP = 2.4, !GWD = 0.225

BPDA matched to NLC , k̄, c̄
lastfm: N = 8250, ˛ = 1.915, b = 1.51 · 10−4

email: N = 1133, ˛ = 1.565, b = 0.002032

WPR matched to NLC , k̄, c̄, l̄
lastfm: N = 8200, H = 0.0108, p = 0.000506, pb = 0.9994
email: N = 1133, H = 0.040, p = 0.008498, pb = 0.991

NLC : average largest component size (number of nodes); k̄: average degree; c̄: average
clustering coefficient; l̄: average shortest path length. k̄, c̄, and l̄ were calculated for
the largest component of the network.

c̄, decreasing clustering spectra c(k), and positive degree–degree
correlations r. A detailed description of the fitting procedure is
included in Appendix A.2.

3.3. Adaptability of the models

Not surprisingly, for almost all models, average largest com-
ponent size NLC and average degrees k̄ could be fitted closely to
both data sets. For the models with only two free parameters
(DEB, Váz), we had no control over other network features. These
two-parameter models turn out to have excessively high average
clustering coefficients for the moderate average degrees displayed

in our two data sets. For most of the other models, clustering
could be tuned rather closely. The TOSHK model, with its discrete
parametrization of the number of triangles formed, was not able to
exactly match the clustering values despite having three parame-
ters.

For the model ERGM1, we allowed the average degree to remain
slightly below the target in order to obtain correct clustering,
because aiming at both correct average degree and clustering led
to an instable region of model parameters (see Fig. 13 in Appendix
A.2). Initially, we attempted using automated optimization algo-
rithms (such as snobfit Huyer and Neumaier, 2008) to fit the ERGM1
model, but these failed due to the instability. Based on the intuition
of the model parameters obtained from the attempts at fitting, we
initially selected values that roughly produced the desired NLC , k̄,
and c̄, and manually modified them for a better fit. Starting from
parameter values that generated networks in which the cluster-
ing coefficient matched the email data and the average degree was
only slightly too small, it turned out that a very small increase in
the parameter !L (done in order to increase average degree) caused
average degree to jump dramatically and the clustering coefficient
to plummet. Hence, we settled for a lower value of k̄.

Average geodesic path lengths l̄ were approximately correct for
all but the nodal attribute model treated in one dimension (BPDA),
although l̄ was used for fitting only in the WPR model. The assorta-
tivity coefficient r was not used for fitting any model, although we
attempted using it for fitting WPR and ERGM1. The ERGM1 model
was only fitted to the email data, because generating networks of
size 8000 and fitting their parameters did not seem feasible for the
ERG model.

4. Comparison of higher order statistics

Having fitted the models according to average values of partic-
ular network characteristics, we address their degree distributions
P(k), clustering spectra c(k), and geodesic path length distributions
P(l). We also assess the community structure of the networks using
several measures. In Section 4.5 we combine and compare the dif-
ferent mechanisms for triadic closure and link deletion employed
in the dynamical NEMs. We use graphs to assess goodness of fit as
promoted by Hunter et al. (2008). It should be borne in mind when
assessing the resulting network structures that the ERGM1 model
was used in a near-degenerate parameter region.

Table 6
Basic statistics of the lastfm and email data sets and the models fitted to each.

Model/data NLC L k̄ c̄ r l̄ lmax

Last-fm-fin 8003 16,824 4.20 0.31 0.22 7.4 24
DEB 8009±30 16,858±224 4.21±0.05 0.38±0.01 0.10±0.01 7.0±1.6 18.1±1.4
MVS 7989±38 16,816±153 4.21±0.03 0.30±0.01 0.02±0.01 7.8±1.6 17.4±1.0
KOSKK 8006±20 16,849±207 4.21±0.05 0.31±0.01 0.05±0.01 7.2±1.5 16.3±0.9
TOSHK 8003 16,791±93 4.20±0.02 0.34 ±0.01 0.14±0.01 6.6±1.3 13.8±0.6
Váz 8003 16,801±171 4.20±0.04 0.29±0.01 0.27±0.02 8.3±2.6 22.6±1.5
BPDA 8005±31 16,794±141 4.20±0.03 0.29±0.01 0.30±0.02 23.9±9.3 60.1±8.0
WPR 8004±19 16,972±150 4.24±0.03 0.29±0.01 0.30 ±0.02 8.1±1.6 18.2±1.1

Email 1133 5451 9.62 0.22 0.08 3.6 7
DEB 1133±3 5452±249 9.62±0.43 0.45±0.01 0.06±0.02 3.4±0.9 7.7±0.7
MVS 1113±1 5282±77 9.48±0.14 0.23±0.01 0.05±0.04 3.8±1.1 9.6±0.6
KOSKK 1134±2 5425±193 9.57±0.34 0.22±0.01 0.06±0.02 3.5±0.9 7.5±0.6
TOSHK 1133 5453±52 9.63±0.09 0.29±0.01 0.09±0.02 3.4±0.8 6.1±0.3
Váz 1133 5453±136 9.63±0.24 0.42±0.02 0.12±0.03 4.6±1.7 13.6±1.4
BPDA 1133±1 5477±172 9.67±0.30 0.22±0.01 0.22±0.02 4.4±0.8 8.4±0.5
WPR 1133±1 5448±72 9.62±0.13 0.21±0.01 0.20±0.03 3.6±0.7 6.0±0.2
ERGM1 1133±8 4800±460 8.47±0.77 0.21±0.01 0.04±0.02 3.6±0.84 7.5±0.83

All statistics are calculated for the largest component of each network. NLC : largest component size, L: number of links; k̄: average degree; c̄: average clustering coefficient;
r: assortativity coefficient; l̄: average geodesic path length; lmax: longest geodesic path length. The values are averaged over 100 realizations of each network model. The
standard error of the averages is displayed whenever there was fluctuation in the values.
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Fig. 4. Degree distributions P(k) of the email data (solid line) and in selected models fitted to it. The box plots display medians and first and third quartiles in 100 network
realizations. Whiskers extend from each end of the box to the most extreme values in the data within 1.5 times the interquartile range from the ends of the box. Outliers are
denoted by ‘+’.

4.1. Degree distribution

Degree distributions are shown in Fig. 4 for the email data and
selected models. The exact shapes of the degree distributions pro-
duced by the models are not as important as their markedly differ-
ent probabilities for the presence of high degree nodes (Fig. 4). The
nodal attribute models, of which the lastfm fit of WPR is shown, pro-
duce skewed but fast-decaying degree distributions that imply the
absence of nodes with very high degree. These distributions are well
fit with the Poisson distribution,4 as shown analytically by Boguñá
et al. (2004) for the BPDA model. The Váz model produces a very
broad degree distribution (not shown) that was shown by Vázquez
(2003) to decay as power law, P(k)∼k−' , which implies the presence
of a few nodes with extremely high degree. The tails of the degree
distributions produced by the dynamical NEMs and the growing
TOSHK model as well as the ERGM1 model all appear to decay
slower than the Poisson distribution, but faster than power law. Of
these, the models TOSHK, KOSKK, and ERGM1 are displayed in Fig. 4.

In our data sets, the degree distribution decays exponentially
(email) (Guimerá et al., 2003) or slower (lastfm) (Fig. 3). In larger
data sets based on one-to-one communication, even broader degree
distributions have been observed (Lambiotte et al., 2008; Onnela
et al., 2007a; Seshadri et al., 2008). The NEMs give rise to degree
distributions that match these empirical data on large acquaintance
networks better than the nodal attribute models.

4.2. Clustering spectrum

Many network models display roughly an inverse relation
between node degree and clustering5: c(k)∼(1/k). This holds true

4 The homophily principle does not always lead to a Poisson degree distribu-
tion. The shape of the degree distribution depends on how the nodal attributes
are distributed. Masuda and Konno (2006) used an exponentially distributed fit-
ness parameter as the basis for homophily, and obtained a flat degree distribution
P(k) = const. As they observe, this is unrealistic. Combined with another mechanism,
homophily can also lead to a broader degree distribution (Masuda and Konno, 2006).

5 This follows naturally in any model where an increase in the number of links of
a node goes hand in hand with an increase in the number of triangles around it. If on

also for most of the NEMs studied here, of which TOSHK, KOSKK,
and DEB are shown in Fig. 5, as well as for the ERGM1 model
(not shown). The figures display fits to lastfm data, but results
are similar for the email fits. In contrast, the homophily mecha-
nism on which the nodal attribute models are based is seen to
produce a flat clustering spectrum c(k) = const, shown in Fig. 5
for the lastfm fit of the WPR model. In all empirical network
data that we have come across, including both of our data sets
(Fig. 5) as well as acquaintance networks based on Messenger
and mobile phone calls (e.g. Onnela et al., 2007a; Leskovec and
Horvitz, 2008), clustering c(k) decreases with increasing degree
k of a node. This indicates that attribute based homophily alone
does not seem to explain observed network structures, support-
ing the findings by Masuda and Konno (2006) and Hunter et al.
(2008).

4.3. Geodesic paths

Apart from the nodal attribute model treated one-dimensionally
(BPDA), in which average geodesic path lengths are strikingly
long compared to the data, all networks display reasonable
path length distributions (Fig. 6). The dynamical NEMs and the
TOSHK model are slightly too compact, with largest path lengths
falling below those in the data. The Váz model, surprisingly,
has rather long geodesic paths despite its broad degree distribu-
tion. Generally, high degree nodes decrease path lengths across
the network, but the high assortativity of the Váz networks
seems to counter the effect. For reference, even in an extremely
large acquaintance network of several million individuals world-
wide (Leskovec and Horvitz, 2008), the average distance between
two individuals is 6.6, and path lengths up to 29 have been
found.

average increasing the degree k of a node by one is accompanied by an increase of
the number N% of triangles around the node by a, the resulting clustering coefficient
for a node of degree k will be on average c(k) = N%/(k(k − 1)/2) = ak/(k(k − 1)/2) ≈
(2ak/k2) = (2a/k).
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Fig. 5. Clustering spectrum c(k) in the lastfm data (solid line) and in models fitted to it. Averaged over 100 network realizations.

4.4. Community structure

Cliques. Finally, we assess the community structure of the
networks. Perhaps the simplest possible measure of community
structure is the number of cliques (Fig. 8(a)), or fully connected
subgraphs, of different sizes. Fig. 7 displays the average numbers of
cliques in the model networks. Because each network has roughly
an equal number of nodes and links, the different numbers of
cliques are due to the arrangement of links within the network
and not to differences in global link density. It turns out that the
NAMs produce clique size distributions that match the data sets
fairly well in both fits. The WPR model, fitted to the email data,
is shown in Fig. 7. The KOSKK and DEB models also produce dis-
tributions roughly comparable to the empirical data, and the Váz
model in fact produces far too many large cliques when link density
is high (Fig. 7). The MVS and TOSHK models have trouble produc-
ing large enough cliques when link density is low (the lastfm fits).
A possible explanation of why the MVS model produces very few
cliques is indicated by the comparison of Section 4.5, where node

Fig. 6. Distributions P(l) of geodesic path lengths l in models fitted to (a) the lastfm
data, and (b) the email data. The data is shown as a thick black line in each panel.
Averaged over 100 network realizations.

deletion is seen to preserve more cliques than link deletion. The
parametrization of the TOSHK model, requiring that the number of
secondary contacts be drawn from a uniform distribution, severely
limits the number of coincident triangles and hence cliques which
can be formed. The ERGM1 model produces the fewest cliques of
all the models.

k-Clusters. We also identify communities using the k-clique-
percolation method developed by Palla et al. (2005). The method
defines a k-cluster as a subgraph within which all nodes can be
reached by ‘rolling’ a k-clique such that all except one of its nodes are
fixed (see Fig. 8(b)). Fig. 9 displays the size distributions of k-clusters
with k = 4 and k = 5 for several models fitted to the email data. As
the ERGM1 model produced very few cliques apart from triangles, it
cannot generate large k-clusters for k > 3. The other models gener-
ally produce 4-cluster size distributions roughly matching the data,
but large 5-clusters are relatively few. The Váz model generates net-
works containing very large k-clusters with high values of k. These
are likely due to an extremely dense core’ formed around nodes that
joined the network early on. For example, each of the 100 network
realizations contained 10-cluster of size s = 72± 15 (not shown).
Such dense clusters are not generally observed in empirical data.
For example, in the lastfm and email data sets, the largest 10-clusters
are of sizes 10 and 12, respectively.

Role of links with low overlap. In both of our empirical networks,
as well as in the networks generated by the studied models, a rather
large fraction of edges does not participate in any triangles. In the
lastfm and email data, the fraction of such edges is 31.2 % and 22.4%,
respectively.6 The DEB, TOSHK, Váz, and ERGM1 models produce
slightly too few such links (20–22% in the the lastfm fits and 4–5%
in the email fits, except 12.6% in the email fit of ERGM1), whereas
the nodal attribute models and KOSKK tend to generate slightly too
many of them (35–40% in the the lastfm fits and 27–41% in the email
fits).

6 This might be due to the nature of our empirical data sets, which are sampled
from networks that are constantly growing with links and nodes accumulating over
time. In them, a relatively large fraction of nodes are newcomers who have only
established a few links to the system, such that triangles have not yet been formed
around them.
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Fig. 7. Number n(k) of cliques of size k in the model networks fitted to the email data, shown as a solid line in each panel for reference. Cliques within larger cliques, such as
triangles within a 4-clique, are not counted. Averaged over 100 network realizations.

We can ask what structural role is played by links that do not par-
ticipate in triangles, or more generally, by links whose end nodes
share only a small fraction of their neighbors. Within a commu-
nity, adjacent nodes tend to share many neighbors, while for edges
between communities, the neighborhoods of the end nodes will
not overlap much. This can be quantified using a measure called
the overlap Oij (Onnela et al., 2007a), which could be interpreted as
a modification of the edgewise shared partners measure (Hunter,
2007), measuring the fraction instead of the number of edgewise
shared partners for the end nodes of an edge. The measure also
bears resemblance to the Jaccard coefficient (Jaccard, 1901). The
overlap is defined as Oij = nij/((ki − 1) + (kj − 1) − nij), where nij is
the number of neighbors common to both nodes i and j, and ki and
kj are their degrees (Fig. 10).

Removing low-overlap-links will separate dense, loosely inter-
connected communities from one another. This turns out to discern
the nodal attribute models and the KOSKK model from the other
models and our empirical data. Fig. 11 (a) displays the relative sizes
of the largest component after removing links that do not partici-
pate in triangles for the lastfm data and the models fitted to it. The
nodal attribute models break down to small clusters, whereas in
the other models a large core remains.

As noted earlier, the NAMs contain more zero-overlap links than
the other models. Hence, it is useful to check whether their break-
down was due to a larger fraction of removed links. We can test this

Fig. 8. (a) k-Cliques for k = 3, 4, 5. (b) An example of a 4-cluster with 6 nodes,
highlighting the 4-cliques from which it is formed.

by removing an equal fraction of links from all networks (41%, the
maximum fraction of links removed from any network when only
non-triangle-links were removed) (Fig. 11(b)). We remove links in
increasing order of overlap Oij . Again, a core remains intact in most
of the NEMs, whereas the NAMs and the KOSKK network break
down, indicating in these models the absence of a core, and the
role of low overlap links as bridges between clusters.

The link densities of the remaining components, d = 2 l/s(s − 1),
where s is the number of nodes in the component and l the number
of links, are moreover observed to be slightly higher in the NAMs
than in the other models, despite the fact that more links were
removed from them (not shown). The above findings show that
these networks consist of very clear communities that are loosely
interconnected. The other NEMs and ERGM1 on the other hand
contain a core that does not consist of such loosely connected
clusters. This difference is depicted schematically in Fig. 11(c)
and (d).

In the email fits, link density in the network is higher, and for all
networks slightly larger overlap links need to be removed in order
to decompose them to small clusters (not shown), but the general
difference between the NEMs and NAMs remains. As the ERGM1
model was only fitted to the email data, it is not displayed in Fig. 11.
Removing low overlap links did not reduce the largest component
of the ERGM1 networks practically at all – even after removing 50%
of links beginning with lowest overlap, a core containing on average
93.6% of the nodes remains intact – consistently with the finding
that the networks did not contain many denser substructures such
as cliques or k-clusters.

4.5. Differences in network structure resulting from choice of
mechanisms for triadic closure and link deletion

Here, we will examine the differences in network structure
resulting from combinations of the mechanisms of link genera-
tion (T1, T2) and deletion (ND, LD) employed in dynamical network
evolution models. Taking as a starting point the simplest of the
dynamical models (DEB), in which a newcomer will link to exactly
two uniformly randomly chosen nodes, after which it will only
initiate triadic closure steps, we study all four combinations of
the mechanisms (Fig. 12(a)). Two findings speak in favor of using
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Fig. 9. Average number n(s) of k-clusters of size s in a network, for k = 4 (♦) and k = 5 ((), in the email data, and in models fitted to it. Averaged over 100 network realizations.

Fig. 10. Overlap Oij of edge eij .

the node deletion mechanism: The model variants using T1 show
a clearly assortative relation, suitable for social network models,
whereas the T2 networks are dissortative or very weakly assortative
(Fig. 12(b)). Node deletion also preserves more cliques in the net-
work, a desirable feature for social networks (Fig. 12(c)). The larger
number of cliques preserved by node deletion is not explained by
the clustering coefficients, which turned out to be similar in all net-
works. The parameters were selected such that NLC and k̄ matched
the lastfm data.

The choice of triangle generation mechanism, on the other hand,
is seen to affect the degree distribution. Networks generated with
the T1 mechanism have higher degree nodes than those using the
T2 mechanism (Fig. 12(d)). This is because following a link is more

likely to lead to a high degree node than picking a node randomly.
Because in T1 both of the nodes gaining a link in the triad formation
step are chosen by following a link, high degree nodes obtain more
additional links than when the T2 mechanism is used, in which one
of the nodes is chosen randomly. The choice of T1 or T2 does not
seem to have an effect on the number or size of cliques generated,
nor on degree–degree correlations.

5. Summary and discussion

In order to assess the resemblance to empirical networks of
the many models for social networks that have been published
in recent years in the physics-oriented complex networks litera-
ture, we have fitted these models to empirical data and assessed
their structure. We have also compared these models with an expo-
nential random graph model that incorporates recently proposed
specifications, in the first systematic comparison between models
from these families. In addition to comparing structural features of
networks produced by the models, we have discussed the different
philosophies underlying the model types.

We selected a state-of-the-art exponential random graph model
employing the GWESP term (Hunter et al., 2008), which has earlier

Fig. 11. (a) Relative size RLC of the largest connected component in the models fitted to the lastfm data after removing links with overlap O = 0. (b) To show that the breakdown
of the nodal attribute models was not simply due to a larger number of links removed, we now remove the same fraction of the lowest overlap links from all models and
data (41%, the maximum fraction removed in (a)). Data averaged over 100 network realizations. (c and d) Schematic depiction of the structural differences related to links
with low overlap (links whose end nodes share only a small fraction of their neighbors). (c) Low overlap links connect small, relatively tightly bound clusters together. (d)
The network contains a core that does not disintegrate when low overlap links are removed.
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Fig. 12. Comparison of mechanisms employed in dynamical network evolution models. (a) Two mechanisms of triadic closure (T1 and T2) are combined with two ways of
deleting links (node deletion refers to deleting all links of a node, and link deletion refers to deleting randomly selected links). The same symbols are used in panels (b)–(d).
(b) Average nearest neighbor degree knn with respect to node degree k, variants arranged as in the schematic figure. The lastfm data is also shown in each panel. (c) Number
n(k) of cliques of each size k. Smaller cliques within larger cliques are not counted. (d) Degree distribution P(k). Averaged over 100 network realizations.

been employed without difficulty when fitting ERGMs to a large
social network (Goodreau, 2007). The model turned out to be insta-
ble in the parameter region best fitting our data, which should
be borne in mind when comparing model fit. The fact that mul-
timodality can be encountered even with this ERGM with realistic
parameters should lead us to carefully consider the reliability of the
results when applying the model.

The structural features we focused on are similar in the two
included empirical data sets as in numerous other large empirical
social networks (Onnela et al., 2007a; Seshadri et al., 2008; Leskovec
and Horvitz, 2008) in that they have highly skewed degree distri-
butions, high average clustering coefficients, decreasing clustering
spectra c(k), and positive degree–degree correlations r. Therefore,
any widely applicable model for social networks should be able
to approximately reproduce the average values and distributions
of their main characteristic features. However, as the philosophy
behind the NEMs studied here is to explain the emergence of com-
mon structural features of social networks, we shouldn’t expect
them to capture perfectly all features of particular empirical data
sets. Our main motivation for fitting the models to the selected tar-
get features was to unify approximately some of their properties, in
order to compare meaningfully their higher order properties, such
as the degree distribution and community structure. These are not
likely to be drastically altered by small differences in the average
values. Hence, we do not consider an accurate fit in the average
quantities of extreme importance.

For almost all models, we saw that average largest component
size NLC and average degrees k̄ could be fitted closely to both empir-
ical data sets. In the ERGM1 model, we compromized matching
average degree in order to obtain a reasonable clustering coeffi-
cient. Adaptability was limited by the number of free parameters.
The models DEB and Váz, which had only one free parameter in
addition to network size, turned out to have excessively high aver-
age clustering coefficients even for the moderate average degrees
displayed by our two data sets. For most of the other models, cluster-

ing could be tuned rather closely. Being able to match the targeted
average values of these two data sets does not guarantee that a
model is able to match those features in other empirical data, how-
ever. In this sense, the generalisability of conclusions based on only
two data sets is limited.

Table 7 summarizes the structural features in networks resulting
from the different model types. Nodal attribute models (NAMs) in
which the nodes are located with uniform probability in the under-
lying social space and links are based solely on homophily, produce
a clustering spectrum c(k) strikingly different from observed data,
indicating that it is not a sufficient description of the mechanisms
at play in the formation of social networks. They also produce
peaked degree distributions without very high degree nodes that
do no agree with empirical data on large scale social networks.
The homophily principle employed in the nodal attribute models is
seen to be sufficient for producing strong positive degree–degree
correlations. This is a direct result of the dependence of link prob-
ability on distance: because high degree nodes appear in locations
with a dense population of nodes, their neighbors will also tend
to have high degree. The NAMs also generate networks containing
a large number of cliques and consisting of dense clusters loosely
connected with low overlap links. Their clustered structure appears
more pronounced than in the data.

We find that many of the studied network evolution models
(NEMs) produce broader degree distributions and decreasing clus-
tering spectra that agree more closely with empirical data. Most
of them also generate assortative networks, although typically not
to the same extent as in the data, and many large cliques and
k-clusters. In the dynamical NEMs, node deletion is seen to pro-
duce more assortative networks than link deletion. With respect
to thresholding by overlap, the dynamical KOSKK model displayed
the clearest clustered structure of all the NEMs. This shows that
the weights employed in tie formation in the KOSKK model play
an important role in the formation of community structure, as the
authors observed (Kumpula et al., 2007). The other NEMs produced



252 R. Toivonen et al. / Social Networks 31 (2009) 240–254

Table 7
Summary of structural properties of networks generated with the studied models.

Property lastfm and email NAMs Dynamical NEMs Growing NEMs ERGM1

Degree distribution Relatively broad Peaked Relatively Broad Broad Relatively broad
Clustering spectrum Decreasing Flat Decreasing Decreasing Decreasing
Assortativity Yes Yes (high) Yes (weak) Yes (moderate/high) Yes (weak)
Geodesic path lengths – In 1D, too long longest

paths
Reasonable Reasonable Reasonable

Cliques Many large cliques Many large cliques Many in KOSKK, fewest
in MVS

Too few in TOSHK,
exceedingly in Váz

Very few

k-Clusters Many large k-clusters
for k = 4 and k = 5

Reasonable Reasonable in DEB and
KOSKK, too few in MVS

In Váz, exceedingly
large k-clusters with
large k

No large k-clusters

Consisting of dense clusters
interconnected by
low-overlap links

No Yes Yes (KOSKK), no (DEB
and MVS)

No No

networks which, in accordance with the data, contained a large core
that did not break apart when low overlap links were removed.

The ERGM1 model was seen to generate very few large cliques.
It did produce assortative networks, although with relatively low
assortativity.

Very large social networks of millions of individuals, within a
country or worldwide, can be assessed with data provided by mod-
ern electronic communications, such as mobile phone calls (Onnela
et al., 2007b) or instant messaging (Leskovec and Horvitz, 2008).
The data have revealed features of large scale networks of human
interaction that could not be discerned from a small subnetwork.
These include the tails of highly skewed distributions as well as dis-
tributions of mesoscale structures, such as the size distribution of
communities. Modeling the structure observed in large networks
benefits from the ability to generate networks of comparable size.
NEMs and NAMs fulfill this requirement.

Using realistic models for social networks in simulation studies
of social processes is essential in light of the knowledge that net-
work structure influences many processes (Castellano et al., 2009),
such as the emergence and survival of cooperation (Lozano et al.,
2008), spreading of information (Onnela et al., 2007b; Moreno et
al., 2004) or epidemics (Boguñá and Pastor-Satorras, 2002), and
coexistence of opinions (Lambiotte et al., 2007).

Many structural characteristics of social networks were attained
even with very simple mechanisms. However, neither the nodal
attribute models based on homophily, nor the network evolution
models based on triadic closure and global connections, were able
to reproduce all important features of social networks. As both
mechanisms obviously are present in the evolution social networks,
a combination of the model types could yield more realistic network
models.
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Appendix A.

A.1. Basic network measures

The network representation of social contacts consists of
nodes representing the individuals, and links representing the ties
between them. An overline is used to denote averaging over all
nodes (or links) within the network, or across several networks.
We denote by N the number of nodes in a network, i.e. net-
work size. A component of a network is a connected subset of
nodes. In this paper, we study the largest component LC of each
network. We denote its size by NLC . The number of network neigh-

bors of a node is called its degree k. An isolated node has degree
zero.

A measure of local triangle density, the clustering coefficient,
describes the extent to which the neighbors of node i are acquainted
with one another: if none on them know each other, ci is zero, while
if all of them are acquainted, ci = 1. For a node i with degree ki and
belonging to Ti triangles, the clustering coefficient is defined as

ci = Ti

ki(ki − 1)/2
, (4)

where the denominator ki(ki − 1)/2 expresses the maximum pos-
sible number of triangles i could belong to given its degree. The
clustering coefficient is not defined for nodes with degree k < 2. The
average clustering coefficient, averaged over all nodes with k ≥ 2 in
the network, is denoted c̄. c(k) denotes the average clustering coef-
ficient of nodes with degree k. The curve c(k) is called the clustering
spectrum.

In large empirical social networks, typically high degree nodes
tend to be linked to other high-degree nodes, and low-degree nodes
tend to be linked among themselves. One way of quantifying this
effect is using linear correlation, or the Pearson correlation coeffi-
cient, between the degrees ki and kj of pairs of connected nodes.
This is also called the assortativity coefficient r (Newman, 2002):

r =

∑

e

kikj/E −

[
∑

e

(1/2)(ki + kj)

]2

/E2

∑

e

(1/2)(k2
i + k2

j )/E −

[
∑

e

(1/2)(ki + kj)

]2

/E2

,

where E is the total number of links in the network. Assortativity
can also be quantified using the measure average nearest neighbor
degree knn(k), found by taking all nodes with degree k, and averaging
the degrees of their neighbors. If the curve knn(k) plotted against k
has a positive trend, nodes with high degree typically also have
high-degree neighbors, and hence the network is assortative.

The geodesic path length lij between nodes i and j in a net-
work means the minimum number of links that need to be
traversed in order to get from i to j. The average length l̄ of
geodesic paths between nodes describes the compactness of the
network.

A.2. Determining optimal network parameters

Our fitting method consists of simulating network realizations
with different values of the model parameters, and finding the val-
ues (points in the parameter space) that produce the best match to
the following features of the empirical data sets: average degree k̄,
average clustering coefficient c̄, and average geodesic path lengths
l̄ (in this order of importance, depending on the number of model
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parameters). This approach deviates from the tradition of maxi-
mum likelihood estimation for fitting probabilistic models.

We attempt to minimize the relative error in each chosen fea-
ture. For example, for average degree k̄ in a model with given
parameter values p, being fitted to a data set with average degree
k̄target , the relative error is

|!k̄(p)| =
∣∣∣∣

k̄(p) − k̄target

k̄target

∣∣∣∣ . (5)

The errors for each feature are combined in the error function
f (p), whose norm |f (p)| is minimized. For example, if fitting to NLC ,
k̄ and c̄, the error function and its norm take the shape

f (p) = [wNLC
)NLC

wk̄)k̄ wc̄)c̄], (6)

and its norm

|f (p)| =
√

w2
NLC

)2
NLC

+ w2
k̄
)2

k̄
+ w2

c̄ )
2
c̄ . (7)

The error function should have equally many components as
there are network parameters. We chose weights that reflected the
order of importance given to the targeted features, putting the most
emphasis on matching the number of nodes and links, less on clus-
tering, and least on average geodesic path lengths. It turned out
that for nearly all of the models (DEB, MVS, KOSKK, Vaz, BPDA,
email fit of WPR) the result was insensitive to weights, because
the models were able to match the target values closely (up to the
number of model parameters). In optimizing the models DEB and
KOSKK, we used a linear approximation for the components of the
error function, iteratively refining the approximation close to the
optimum. For MVS, we used the the well established Nelder–Mead
method (Nelder and Mead, 1965), which involves calculating val-
ues of the error function at the corners of a simplex (a triangle in
two-dimensional space, a tetrahedron in 3D). The optimal value of
the error function is iteratively approached by rolling one corner of
the simplex over the others such that the object moves towards the
region where the function gets optimal values. The diameter of the
simplex is adjusted during iteration to increase accuracy.

Optimization algorithms were not needed for the Váz and BPDA
models and the email fit of WPR. For the Váz model, a very good
approximation for the optimal value of u can be obtained analyti-
cally. This estimate could be refined manually. For the BPDA model,
the analytical estimates for k̄ and c̄ derived by the authors could be
used as a starting point in optimization. We refined the initial esti-

mates by first adjusting ˛ to find the correct value for the clustering
coefficient, and then changing b until the correct mean degree was
found. For small enough adjustments, the latter corrections did not
affect the value of c̄. The adjustments were done by trial and error,
but it was not difficult to get an accurate fit for mean degree and
clustering in this manner. For the email fit of WPR, it turned out that
NLC ≈ N, and hence the number of free parameters was reduced. p
was set to obtain desired average degree, and the two remaining
parameters were optimized by generating networks with a grid of
their values.

Exact fits could not be obtained for TOSHK, ERGM1, and the
lastfm fit of WPR. For WPR, we used weights [wNLC

, wk, wc, wl] =
[4 4 2 1] and grid optimization similarly as in the email case,
although it was costly in four dimensions. Obtaining values in a
grid enabled us to visulize the dependence of the targeted fea-
tures on the model parameters. It turned out that assortativity
and clustering varied closely together, rendering assortativity use-
less as a fitting target if clustering was used; hence we used
average geodesic path lengths, which enabled an optimum to
be determined. As the TOSHK model has only one continuous
parameter p, it suffices to optimize p for all values of the dis-
crete parameter k below some kmax, making sure that kmax is large
enough. The parameter p was optimized to reach the desired mean
degree for each k, and the pair (k, popt(k)) that provided the best
match to the desired c̄ was selected as the optimum. Optimiza-
tion was carried out with the Matlab optimization toolbox function
fminbnd.m, which is based on golden section search and parabolic
interpolation.

For the remaining case in which no exact match was found
(ERGM1), we attempted using the linear approximation method
and Nelder–Mead algorithm described above, as well as other,
potentially more robust methods (Elster and Neumaier, 1995; Huyer
and Neumaier, 2008), but these failed likely due to multimodal-
ity of the probability distribution. Fig. 13 illustrates the instability
we encountered when attempting to fit the ERGM1 model to the
email data. The panels display average degree k̄ (a) and average
clustering coefficient c̄ (b) in networks generated with various val-
ues of !L , with the other parameters kept constant at the values
listed in Table 5. For each value of !L , 60 network realizations are
shown (drawn from MCMC chains with burn-in 5 × 107 steps, and
5 realizations taken from each chain at intervals of 107). Because
!L controls the number of random links, an increase in !L generally
increases average degree and decreases average clustering. How-

Fig. 13. (a) Average degree k̄ and (b) average clustering coefficient c̄ in networks generated from the model ERGM1 with different values of !L .
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ever, at roughly !L = −6.961 we observe a sudden transition into a
much denser, less clustered network.
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